2流动性的测定
由于影响液态金属充型能力的因素很多 (后述),在工程应用及研究中,不能笼统地对
各种合金在不同的铸造条件下的充型能力进行比较。通常用相同实验条件下所测得的合金流
动性表示合金的充型能力。因此,可以认为合金的流动性是在确定条件下的充型能力。液态
金属的流动性是用浇注 “流动性试样”的方法衡量的。在实际中,是将试样的结构和铸型性
质固定不变,在相同的浇注条件下,例如在液相线以上相同的过热度或在同一的浇注温度
下,浇注各种合金的流动性试样,以试样的长度或以试样某处的厚薄程度表示该合金的流动
性。对于同一种合金,也可以用流动性试样研究各铸造因素对其充型能力的影响。
对应着渐次收缩的铸型体积,铸件的冷却速度比平面部分要小。由此可以
推论,铸型中被液态金属三面包围的**部分、型芯以及靠近内浇道附近的铸型部分,由于
有大量金属液通过,被加热到很高温度,吸热能力显著下降,相对应的铸件部分,其温度场
就比较平坦。
二、不同界面热阻条件下的温度场
1铸件在绝热铸型中凝固
砂型、石膏型、陶瓷型、熔模铸造等铸型材料的热导率远小于凝固金属的热导率,可统
称为绝热铸型。因此,在凝固传热中,金属铸件的温度梯度比铸型中的温度梯度小得多。相
对而言,金属中的温度梯度可忽略不计。
还可以把固液部分划分为两个
带。在右边的带里,晶体已经连成骨架,但是液体
还能在其间移动。在左边的带里,因为已接近固相
线温度,固相占绝大部分,并已连结成为牢固的晶
体骨架,存在于骨架之间的少量液体被分割成一个
个互不沟通的小 “溶池”(图中的黑点)。当这些小
溶池进行凝固而发生体积收缩时,得不到液体的补
充。固液部分中两个带的边界叫 “补缩边界”。以
上是某一瞬间的凝固情景。在铸件的凝固过程中,凝固区域按动态曲线所示的规律向铸件中心推进。